Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.588
Filtrar
1.
J Interferon Cytokine Res ; 42(2): 49-61, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171706

RESUMO

The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.


Assuntos
Inflamação/fisiopatologia , Receptores de Interleucina-1/fisiologia , Animais , COVID-19/fisiopatologia , Síndrome da Liberação de Citocina/fisiopatologia , Citocinas/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1/fisiologia , Interleucinas/classificação , Intestinos/metabolismo , Intestinos/patologia , Ligantes , Pulmão/metabolismo , Pulmão/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , NF-kappa B/metabolismo , Domínios Proteicos , Receptores de Interleucina/classificação , Receptores de Interleucina-1/agonistas , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/química , SARS-CoV-2 , Transdução de Sinais , Pele/metabolismo , Pele/patologia
2.
Mediators Inflamm ; 2021: 6370911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955683

RESUMO

Interleukin- (IL-) 38 is an emerging cytokine with multiple functions involved in infection and immunity. However, the potential role of IL-38 in the host immune response during sepsis remains elusive. Herein, we investigated if macrophages in septic mice express IL-38, the molecular mechanisms behind its expression, and the downstream effects of its expression. In mouse peritoneal macrophages, lipopolysaccharide (LPS) upregulated IL-38 and its receptor IL-36R, and the resulting IL-38 shifted macrophages from a M1 to M2 phenotype. Moreover, exposure to IL-38 alone was sufficient to inhibit macrophage apoptosis and LPS-driven activation of the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome. These effects were partly abrogated by IL-38 downregulation. In septic mice, IL-38 markedly lowered serum concentrations of proinflammatory cytokines and greatly improved survival. Conversely, IL-38 blockade aggravated their mortality. Collectively, these findings present IL-38 as a potent immune modulator that restrains the inflammatory response by suppressing macrophage apoptosis and activation of the NLRP3 inflammasome. IL-38 may help protect organs from sepsis-related injury.


Assuntos
Apoptose , Inflamação/prevenção & controle , Interleucina-1/fisiologia , Macrófagos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Sepse/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Interleucina-1/farmacologia , Interleucina-1/uso terapêutico , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/complicações
3.
Mediators Inflamm ; 2021: 2503378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34697538

RESUMO

Autoinflammatory and autoimmune diseases are characterized by an oversensitive immune system with loss of the physiological endogenous regulation, involving multifactorial self-reactive pathological mechanisms of mono- or polygenic nature. Failure in regulatory mechanisms triggers a complex network of dynamic relationships between innate and adaptive immunity, leading to coexistent autoinflammatory and autoimmune processes. Sustained exposure to a trigger or a genetic alteration at the level of the receptors of the natural immune system may lead to abnormal activation of the innate immune system, adaptive system activation, loss of self-tolerance, and systemic inflammation. The IL-1 family members critically activate and regulate innate and adaptive immune responses' diversity and plasticity in autoimmune and/or autoinflammatory conditions. The IL-23/IL-17 axis is key in the communication between innate immunity (IL-23-producing myeloid cells) and adaptive immunity (Th17- and IL-17-expressing CD8+ T cells). In psoriasis, these cytokines are decisive to the different clinical presentations, whether as plaque psoriasis (psoriasis vulgaris), generalized pustular psoriasis (pustular psoriasis), or mixed forms. These forms reflect a gradient between autoimmune pathophysiology with predominant adaptive immune response and autoinflammatory pathophysiology with predominant innate immune response.


Assuntos
Doenças Autoimunes/etiologia , Inflamação/etiologia , Interleucina-1/fisiologia , Psoríase/imunologia , Imunidade Adaptativa , Humanos , Imunidade Inata , Inflamassomos/fisiologia , Células Th1/imunologia , Células Th17/imunologia
4.
Mediators Inflamm ; 2021: 7785890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602858

RESUMO

Breast cancer is one of the top-ranked cancers for incidence and mortality worldwide. The biggest challenges in breast cancer treatment are metastasis and drug resistance, for which work on molecular evaluation, mechanism studies, and screening of therapeutic targets is ongoing. Factors that lead to inflammatory infiltration and immune system suppression in the tumor microenvironment are potential therapeutic targets. Interleukin-1 is known as a proinflammatory and immunostimulatory cytokine, which plays important roles in inflammatory diseases. Recent studies have shown that interleukin-1 cytokines drive the formation and maintenance of an inflammatory/immunosuppressive microenvironment through complex intercellular signal crosstalk and tight intracellular signal transduction, which were found to be potentially involved in the mechanism of metastasis and drug resistance of breast cancer. Some preclinical and clinical treatments or interventions to block the interleukin-1/interleukin-1 receptor system and its up- and downstream signaling cascades have also been proven effective. This study provides an overview of IL-1-mediated signal communication in breast cancer and discusses the potential of IL-1 as a therapeutic target especially for metastatic breast cancer and combination therapy and current problems, aiming at enlightening new ideas in the study of inflammatory cytokines and immune networks in the tumor microenvironment.


Assuntos
Neoplasias da Mama/imunologia , Inflamação/etiologia , Interleucina-1/fisiologia , Microambiente Tumoral/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Interleucina-1/antagonistas & inibidores , Interleucina-1/genética , Terapia de Alvo Molecular , Metástase Neoplásica , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/fisiologia , Evasão Tumoral
5.
Front Immunol ; 12: 642855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968032

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive disease harboring significant morbidity and mortality despite recent advances in therapy. Regardless of disease severity acute exacerbations (IPF-AEs) may occur leading to considerable loss of function and are the leading cause of death in IPF. Histologic features of IPF-AE are very similar to acute respiratory distress syndrome (ARDS), but the underlying mechanisms are incompletely understood. We investigated the role of the NLRP3 inflammasome in IPF and IPF-AE. Bronchoalveolar lavage (BAL) cells were sampled from patients with IPF (n = 32), IPF-AE (n = 10), ARDS (n = 7) and healthy volunteers (HV, n = 37) and the NLRP3-inflammasome was stimulated in-vitro. We found the NLRP3 inflammasome to be hyper-inducible in IPF compared to HV with increased IL-1ß and pro-IL-1ß levels on ELISA upon stimulation as well as increased caspase-1 activity measured by caspase-1p20 immunoblotting. In IPF-AE, IL-1ß was massively elevated to an extent similar to ARDS. To evaluate potential mechanisms, we co-cultured BAL cells with radiated A549 cells (a model to simulate apoptotic alveolar epithelial cells), which led to increased NLRP3 mRNA expression and increased caspase-1 dependent IL-1ß production. In the presence of a reactive oxygen species (ROS) inhibitor (diphenyleneiodonium) and a cathepsin B inhibitor (E64D), NLRP3 expression was suppressed indicating that induction of NLRP3 activation following efferocytosis of apoptotic A549 cells is mediated via ROS and cathepsin-B. In summary, we present evidence of involvement of the NLRP3 inflammasome-caspase pathway in the pathogenesis of IPF-AE, similarly to ARDS, which may be mediated by efferocytosis of apoptotic alveolar epithelial cells in IPF.


Assuntos
Apoptose , Caspase 1/fisiologia , Fibrose Pulmonar Idiopática/complicações , Inflamassomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Células A549 , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Catepsina B/fisiologia , Feminino , Humanos , Interleucina-1/fisiologia , Masculino , Pessoa de Meia-Idade , Precursores de Proteínas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Adulto Jovem
6.
Invest Ophthalmol Vis Sci ; 62(6): 10, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33970198

RESUMO

Purpose: Interleukin (IL)-36 cytokines have been shown to play either beneficial or detrimental roles in the infection of mucosal tissues in a pathogen-dependent manner, but their involvement in fungal keratitis remains elusive. We herein investigated their expression and function in mediating corneal innate immunity against Candida albicans infection. Methods: Gene expression in mouse corneas with or without C. albicans infection was determined by regular RT- and real-time (q)-PCR, Western blot analysis, ELISA or proteome profile assay. The severity of C. albicans keratitis was assessed using clinical scoring, bacterial counting, and myeloperoxidase (MPO) activity as an indicator of neutrophil infiltration. IL36R knockout mice and IL-33-specific siRNA were used to assess the involvement IL-33 signaling in C. albicans-infected corneas. B6 CD11c-DTR mice and clodronate liposomes were used to define the involvement of dendritic cells (DCs) and macrophages in IL-36R signaling and C. albicans keratitis, respectively. Results: IL-36γ were up-regulated in C57BL6 mouse corneas in response to C. albicans infection. IL-36 receptor-deficient mice display increased severity of keratitis, with a higher fungal load, MPO, and IL-1ß levels, and lower soluble sIL-1Ra and calprotectin levels. Exogenous IL-36γ prevented fungal keratitis pathogenesis with lower fungal load and MPO activity, higher expression of sIL-1Ra and calprotectin, and lower expression of IL-1ß, at mRNA or protein levels. Protein array analysis revealed that the expression of IL-33 and REG3G were related to IL-36/IL36R signaling, and siRNA downregulation of IL-33 increased the severity of C. albicans keratitis. Depletion of dendritic cells or macrophages resulted in severe C. albicans keratitis and yet exhibited minimal effects on exogenous IL-36γ-induced protection against C. albicans infection in B6 mouse corneas. Conclusions: IL-36/IL36R signaling plays a protective role in fungal keratitis by promoting AMP expression and by suppressing fungal infection-induced expression of proinflammatory cytokines in a dendritic cell- and macrophage-independent manner.


Assuntos
Úlcera da Córnea/prevenção & controle , Infecções Oculares Fúngicas/prevenção & controle , Imunidade Inata/fisiologia , Interleucina-1/fisiologia , Ceratite/prevenção & controle , Receptores de Interleucina-1/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Candida albicans , Úlcera da Córnea/imunologia , Úlcera da Córnea/microbiologia , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Infecções Oculares Fúngicas/imunologia , Infecções Oculares Fúngicas/microbiologia , Regulação da Expressão Gênica/fisiologia , Ceratite/imunologia , Ceratite/microbiologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
7.
Sci Rep ; 11(1): 8206, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859245

RESUMO

Intestinal epithelial cells (IEC) reside in close proximity to the gut microbiota and are hypo-responsive to bacterial products, likely to prevent maladaptive inflammatory responses. This is in part due to their strong expression of Single Ig IL-1 related receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and toll-like receptor signaling. IL-37 is an anti-inflammatory cytokine that inhibits innate signaling in diverse cells by signaling through SIGIRR. Despite the strong expression of SIGIRR by IEC, few studies have examined whether IL-37 can suppress their innate immune signaling. We characterized innate immune responses of human and murine colonoids to bacteria (FliC, LPS) and host (IL-1ß) products and the role of IL-37/SIGIRR in regulating these responses. We demonstrated that human colonoids responded only to FliC, but not to LPS or IL-1ß. While colonoids derived from different donors displayed significant inter-individual variability in the magnitude of their innate responses to FliC stimulation, all colonoids released a variety of chemokines. Interestingly, IL-37 attenuated these responses through inhibition of p38 and NFκB signaling pathways. We determined that this suppression by IL-37 was SIGIRR dependent, in murine organoids. Along with species-specific differences in IEC innate responses, we show that IL-37 can promote IEC hypo-responsiveness by suppressing inflammatory signaling.


Assuntos
Colo/imunologia , Imunidade Inata/genética , Interleucina-1/fisiologia , Organoides/imunologia , Adulto , Animais , Células Cultivadas , Criança , Colo/metabolismo , Colo/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Organoides/metabolismo , Organoides/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Adulto Jovem
8.
FEBS Open Bio ; 11(5): 1353-1363, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713575

RESUMO

Interleukin (IL)-36α, a newly recognized IL-1 family member, has been previously reported to play a pivotal role in autoimmunity diseases and acute inflammatory reactions. Recently, several studies have indicated that IL-36α has potential anticancer effects against certain types of cancer. However, the expression pattern and functional role of IL-36α in non-small cell lung cancer (NSCLC) have not been elucidated. Here, we report that the mRNA and protein levels of IL-36α are significantly reduced in NSCLC tissues. Low levels of intratumoral IL-36α are correlated with higher tumor status, advanced TNM stage, increased vascular invasion and shorter overall survival (OS). Intratumoral IL-36α expression is an independent prognostic factor for OS (hazard ratio = 3.081; P = 0.012) in patients with NSCLC. Overexpression of IL-36α in lung cancer cells did not disturb cell proliferation, apoptosis or cell-cycle distribution in vitro, but markedly inhibited tumor growth in vivo. Mechanistically, IL-36α reduced the expression and secretion of vascular endothelial growth factor A through inhibiting hypoxia-inducible factor 1α expression. Finally, decreased IL-36α expression was associated with high microvessel density and vascular endothelial growth factor A in patients with NSCLC. Together, our findings suggest that IL-36α expression is a valuable marker indicating poor prognosis in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Interleucina-1/metabolismo , Neovascularização Patológica/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , China , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Interleucina-1/fisiologia , Interleucinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Prognóstico , RNA Mensageiro/genética
9.
J Neurosci ; 40(47): 9103-9120, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33051350

RESUMO

Microglia are dynamic immunosurveillance cells in the CNS. Whether microglia are protective or pathologic is context dependent; the outcome varies as a function of time relative to the stimulus, activation state of neighboring cells in the microenvironment or within progression of a particular disease. Although brain microglia can be "primed" using bacterial lipopolysaccharide (LPS)/endotoxin, it is unknown whether LPS delivered systemically can also induce neuroprotective microglia in the spinal cord. Here, we show that serial systemic injections of LPS (1 mg/kg, i.p., daily) for 4 consecutive days (LPSx4) consistently elicit a reactive spinal cord microglia response marked by dramatic morphologic changes, increased production of IL-1, and enhanced proliferation without triggering leukocyte recruitment or overt neuropathology. Following LPSx4, reactive microglia frequently contact spinal cord endothelial cells. Targeted ablation or selective expression of IL-1 and IL-1 receptor (IL-1R) in either microglia or endothelia reveal that IL-1-dependent signaling between these cells mediates microglia activation. Using a mouse model of ischemic spinal cord injury in male and female mice, we show that preoperative LPSx4 provides complete protection from ischemia-induced neuron loss and hindlimb paralysis. Neuroprotection is partly reversed by either pharmacological elimination of microglia or selective removal of IL-1R in microglia or endothelia. These data indicate that spinal cord microglia are amenable to therapeutic reprogramming via systemic manipulation and that this potential can be harnessed to protect the spinal cord from injury.SIGNIFICANCE STATEMENT Data in this report indicate that a neuroprotective spinal cord microglia response can be triggered by daily systemic injections of LPS over a period of 4 d (LPSx4). The LPSx4 regimen induces morphologic transformation and enhances proliferation of spinal cord microglia without causing neuropathology. Using advanced transgenic mouse technology, we show that IL-1-dependent microglia-endothelia cross talk is necessary for eliciting this spinal cord microglia phenotype and also for conferring optimal protection to spinal motor neurons from ischemic spinal cord injury (ISCI). Collectively, these novel data show that it is possible to consistently elicit spinal cord microglia via systemic delivery of inflammogens to achieve a therapeutically effective neuroprotective response against ISCI.


Assuntos
Comunicação Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Interleucina-1/fisiologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Bromodesoxiuridina/farmacologia , Células Endoteliais/metabolismo , Feminino , Interleucina-1/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Paralisia/induzido quimicamente , Receptores Tipo I de Interleucina-1/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo
10.
J Biol Regul Homeost Agents ; 34(5): 1623-1627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32744052

RESUMO

IL-1 induces a significant number of metabolic and hematological changes. In experimental animals, IL-1 treatments cause hypotension due to rapid reduction of systemic blood pressure, reduced vascular resistance, increased heart rate and leukocyte aggregations. IL-1 causes endothelial dysfunction, the triggering factor of which may be of a different nature including pathogen infection. This dysfunction, which includes macrophage intervention and increased protein permeability, can be mediated by several factors including cytokines and arachidonic acid products. These effects are caused by the induction of IL-1 in various pathologies, including those caused by pathogenic viral infections, including SARS-CoV-2 which provokes COVID-19. Activation of macrophages by coronavirus-19 leads to the release of pro-inflammatory cytokines, metalloproteinases and other proteolytic enzymes that can cause thrombi formation and severe respiratory dysfunction. Patients with COVID-19, seriously ill and hospitalized in intensive care, present systemic inflammation, intravascular coagulopathy with high risk of thrombotic complications, and venous thromboembolism, effects mostly mediated by IL-1. In these patients the lungs are the most critical target organ as it can present an increase in the degradation products of fibrin, fibrinogen and D-dimer, with organ lesions and respiratory failure. It is well known that IL-1 induces itself and another very important pro-inflammatory cytokine, TNF, which also participates in hemodynamic states, including shock syndrome in COVID-19. Both IL-1 and TNF cause pulmonary edema, thrombosis and bleeding. In addition to hypotension and resistance of systemic blood pressure, IL-1 causes leukopenia and thrombocytopenia. The formation of thrombi is the main complication of the circulatory system and functionality of the organ, and represents an important cause of morbidity and mortality. IL-1 causes platelet vascular thrombogenicity also on non-endothelial cells by stimulating the formation of thromboxane A2 which is released into the inflamed environment. IL-1 is the most important immune molecule in inducing fever, since it is involved in the metabolism of arachidonic acid which increases from vascular endothelial organs of the hypothalamus. The pathogenesis of thrombosis, vascular inflammation and angigenesis involves the mediation of the activation of the prostanoid thromboxane A2 receptor. In 1986, in an interesting article (Conti P, Reale M, Fiore S, Cancelli A, Angeletti PU, Dinarello CA. In vitro enhanced thromboxane B2 release by polymorphonuclear leukocytes and macrophages after treatment with human recombinant interleukin 1. Prostaglandins. 1986 Jul;32(1):111-5), we reported for the first time that IL-1 induces thromboxane B2 (TxB2) releases in activated neutrophils and macrophages. An increase in thromboxane can induce leukocyte aggregation and systemic inflammation, which would account for the dramatic thrombi formation and organ dysfunction. Hence, IL-1 stimulates endothelial cell-leukocyte adhesion, and TxB2 production. All these events are supported by the large increase in neutrophils that adhere to the lung and the decrease in lymphocytes. Therefore, ecosanoids such as TxA2 (detected as TxB2) have a powerful action on vascular inflammation and platelet aggregation, mediating the formation of thrombi. The thrombogenesis that occurs in COVID-19 includes platelet and cell aggregation with clotting abnormalities, and anti-clotting inhibitor agents are used in the prevention and therapy of thrombotic diseases. Prevention of or induction of TxA2 avoids thrombi formation induced by IL-1. However, in some serious vascular events where TxA2 increases significantly, it is difficult to inhibit, therefore, it would be much better to prevent its induction and generation by blocking its inductors including IL-1. The inhibition or lack of formation of IL-1 avoids all the above pathological events which can lead to death of the patient. The treatment of innate immune cells producing IL-1 with IL-1 receptor antagonist (IL-1Ra) can avoid hemodynamic changes, septic shock and organ inflammation by carrying out a new therapeutic efficacy on COVID-19 induced by SARS-CoV-2.


Assuntos
Infecções por Coronavirus/patologia , Inflamação/virologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1/fisiologia , Pneumonia Viral/patologia , Trombose/virologia , Tromboxano A2/fisiologia , Animais , Betacoronavirus , COVID-19 , Humanos , Pandemias , Receptores de Interleucina-1 , SARS-CoV-2
11.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461350

RESUMO

BACKGROUND: Tumor ablation techniques, like cryoablation, are successfully used in the clinic to treat tumors. The tumor debris remaining in situ after ablation is a major antigen depot, including neoantigens, which are presented by dendritic cells (DCs) in the draining lymph nodes to induce tumor-specific CD8+ T cells. We have previously shown that co-administration of adjuvants is essential to evoke strong in vivo antitumor immunity and the induction of long-term memory. However, which adjuvants most effectively combine with in situ tumor ablation remains unclear. METHODS AND RESULTS: Here, we show that simultaneous administration of cytidyl guanosyl (CpG) with saponin-based adjuvants following cryoablation affects multifunctional T-cell numbers and interleukin (IL)-1 induced polymorphonuclear neutrophil recruitment in the tumor draining lymph nodes, relative to either adjuvant alone. The combination of CpG and saponin-based adjuvants induces potent DC maturation (mainly CpG-mediated), antigen cross-presentation (mainly saponin-based adjuvant mediated), while excretion of IL-1ß by DCs in vitro depends on the presence of both adjuvants. Most strikingly, CpG/saponin-based adjuvant exposed DCs potentiate antigen-specific T-cell proliferation resulting in multipotent T cells with increased capacity to produce interferon (IFN)γ, IL-2 and tumor necrosis factor-α in vitro. Also in vivo the CpG/saponin-based adjuvant combination plus cryoablation increased the numbers of tumor-specific CD8+ T cells showing enhanced IFNγ production as compared with single adjuvant treatments. CONCLUSIONS: Collectively, these data indicate that co-injection of CpG with saponin-based adjuvants after cryoablation induces an increased amount of tumor-specific multifunctional T cells. The combination of saponin-based adjuvants with toll-like receptor 9 adjuvant CpG in a cryoablative setting therefore represents a promising in situ vaccination strategy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Interleucina-1/fisiologia , Linfonodos/imunologia , Melanoma Experimental/terapia , Oligodesoxirribonucleotídeos/administração & dosagem , Saponinas/administração & dosagem , Linfócitos T/imunologia , Animais , Ablação por Cateter/métodos , Terapia Combinada , Células Dendríticas/imunologia , Feminino , Linfonodos/patologia , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/patologia
12.
Theranostics ; 10(9): 4088-4100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226541

RESUMO

Human interleukin (IL)-37 is a member of the IL-1 family with potent anti-inflammatory and immunosuppressive properties. Previously, it has been reported that IL-37 suppresses tumor growth and progression. However, the roles of IL-37 in pancreatic cancer development and chemo-resistance remain unknown. Methods: Immunohistochemistry was used to analyze the correlation between IL-37 expression and clinicopathological features of pancreatic ductal adenocarcinoma (PDAC). Western-blot and RT-PCR was used to verify the correlation between IL-37 and hypoxia-inducible factor (HIF)-1α. We performed chromatin immunoprecipitation and luciferase assays to validate HIF-1α suppression of IL-37 expression. Moreover, gain- and loss-of-function studies in vitro and in vivo were used to demonstrate the biological function of IL-37 on PDAC development and chemo-resistance. Results: Our results showed that IL-37 expression was remarkably decreased in PDAC tissues when compared to adjacent normal pancreatic tissues. Reduced IL-37 expression in PDACs was associated with increased PDAC histological grade, tumor size, lymph node metastasis and vessel invasion. IL-37 low patients also have remarkably shorter relapse-free and overall survival. Importantly, IL-37 expression was positively correlated with Gemcitabine efficacy. Mechanistically, HIF-1α attenuated IL-37 transcription by binding to the hypoxia response elements (HREs) in IL-37 promoter. Conversely, IL-37 suppressed HIF-1α expression through STAT3 inhibition. Functionally, downregulation of IL-37 in PDAC cells promoted chemo-resistance, migration and progression in vivo and in vitro. Conclusions: Collectively, our data uncovered IL-37/ STAT3/ HIF-1α negative feedback signaling drives Gemcitabine resistance in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Interleucina-1/fisiologia , Neoplasias Pancreáticas , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Feminino , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Índice de Gravidade de Doença , Gencitabina
13.
Reproduction ; 159(4): R203-R211, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31990665

RESUMO

Decidualization denotes the reprogramming of endometrial stromal cells that includes the secretion of different mediators like cytokines, chemokines, and the selective recruitment of immune cells. This physiological process involves changes in the secretome of the endometrial stromal cells leading to the production of immunomodulatory factors. The increased amount of protein secretion is associated with a physiological endoplasmic reticulum (ER) stress and the resulting unfolded protein response (UPR), allowing the expansion of ER and the machinery to assist the protein folding. Notably, the signaling pathways involved in the ER stress and the UPR are interconnected with the onset of a sterile inflammatory response, as well as with angiogenesis. Both of these processes have a key role in decidualization and placentation, therefore, alterations in them could lead to pregnancy complications. In this review, we will discuss how the induction of ER stress and the UPR processes that accompanies the decidualization are associated with embryo implantation and whether they might condition pregnancy outcome. The ER stress activates/triggers sensing proteins which, among others, induces kinase/RNAse-TXNIP expression, activating the NLRP3 inflammasome. This multiprotein system allows caspase-1 activation, which catalyzes the cleavage of the inactive IL-1ß proform toward the mature secretory form, with pro-implantatory effects. However, the sterile inflammatory response should be later controlled in favor of a tolerogenic microenvironment to sustain pregnancy. In accordance, alterations of the ER stress and UPR processes can be reflected in recurrent implantation failures (RIF), recurrent pregnancy loss (RPL), or complications associated with deficient placentation, such as preeclampsia (PE).


Assuntos
Decídua/fisiologia , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Implantação do Embrião , Feminino , Humanos , Interleucina-1/fisiologia , Ciclo Menstrual , MicroRNAs/metabolismo
14.
Front Endocrinol (Lausanne) ; 11: 548812, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488513

RESUMO

Osteoporosis has become a worldwide disease characterized by a reduction in bone mineral density and the alteration of bone architecture leading to an increased risk of fragility fractures. And an increasing number of studies have indicated that osteoblasts undergo a large number of programmed death events by many different causes in osteoporosis and release NLRP3 and interleukin (e.g., inflammatory factors), which play pivotal roles in contributing to excessive differentiation of osteoclasts and result in exaggerated bone resorption. NLRP3 is activated during pyroptosis and processes the precursors of IL-1ß and IL-18 into mature forms, which are released into the extracellular milieu accompanied by cell rupture. All of these compounds are the classical factors of pyroptosis. The cellular effects of pyroptosis are commonly observed in osteoporosis. Although many previous studies have focused on the pathogenesis of these inflammatory factors in osteoporosis, pyroptosis has not been previously evaluated. In this review, pyroptosis is proposed as a novel hypothesis of osteoporosis pathogenesis for the first time, thus providing a new direction for the treatment of osteoporosis in the future.


Assuntos
Osteoblastos/fisiologia , Osteoporose/fisiopatologia , Piroptose , Animais , Humanos , Inflamassomos/fisiologia , Interleucina-1/fisiologia , Interleucina-18/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Transdução de Sinais
15.
Front Immunol ; 10: 2508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708927

RESUMO

In sepsis, dysregulated immune responses to infections cause damage to the host. Previous studies have attempted to capture pathogen-induced leukocyte responses. However, the impact of mediators released after pathogen-leukocyte interaction on endothelial cells, and how endothelial cell responses vary depending on the pathogen-type is lacking. Here, we comprehensively characterized the transcriptomic responses of human leukocytes and endothelial cells to Gram negative-bacteria, Gram positive-bacteria, and fungi. We showed that whole pathogen lysates induced strong activation of leukocytes but not endothelial cells. Interestingly, the common response of leukocytes to various pathogens converges on endothelial activation. By exposing endothelial cells to leukocyte-released mediators, we observed a strong activation of endothelial cells at both transcription and protein levels. By adding IL-1RA and TNF-α antibody in leukocyte-released mediators before exposing to endothelial cells, we identified specific roles for IL-1 and TNF-α in driving the most, but not all, endothelial activation. We also showed for the first time, activation of interferon response by endothelial cells in response to leukocyte-released mediators, independently from IL-1 and TNF-α pathways. Our study therefore, not only provides pathogen-dependent transcriptional changes in leukocytes and endothelial cells during infections, but also reveals a role for IFN, together with IL1 and TNFα signaling, in mediating leukocyte-endothelial interaction in infections.


Assuntos
Infecções Bacterianas/imunologia , Células Endoteliais/fisiologia , Interferons/fisiologia , Interleucina-1/fisiologia , Leucócitos/fisiologia , Micoses/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Comunicação Celular , Células Cultivadas , Humanos , Transdução de Sinais
16.
Nat Rev Immunol ; 19(12): 734-746, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31501536

RESUMO

Type 1 and type 2 diabetes are characterized by chronic inflammation; both diseases involve pancreatic islet inflammation, while systemic low-grade inflammation is a feature of obesity and type 2 diabetes. Long-term activation of the innate immune system impairs insulin secretion and action, and inflammation also contributes to macrovascular and microvascular complications of diabetes. However, despite strong preclinical evidence and proof-of-principle clinical trials demonstrating that targeting inflammatory pathways can prevent cardiovascular disease and other complications in patients with diabetes, there are still no approved treatments for diabetes that target innate immune mediators. Here, we review recent advances in our understanding of the inflammatory pathogenesis of type 1 and type 2 diabetes from a translational angle and point out the critical gaps in knowledge that need to be addressed to guide drug development.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 2/imunologia , Imunidade Inata , Citocinas/antagonistas & inibidores , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Glucose/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Resistência à Insulina , Interleucina-1/fisiologia , Transdução de Sinais/fisiologia
17.
J Biol Regul Homeost Agents ; 33(4): 1019-1022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347346

RESUMO

Mesenchymal stem cells (MSCs) are able to exert immunomodulatory and anti-inflammatory actions. Thanks to these properties, MSCs may be a promising alternative approach for the treatment of inflammatory disease. Important cytokines involved in inflammation are those included in the IL-1 family. Interleukin-37 (IL-37) is one of the member able to suppress both innate and adaptive immunity. Recently, it was found that MSCs and their derivatives can modulate IL-37, and MSCs expressing IL-37 seem to have an enhanced therapeutic efficacy.


Assuntos
Interleucina-1/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Citocinas , Humanos , Inflamação
18.
Arch Toxicol ; 93(8): 2307-2320, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31256213

RESUMO

Chemical leukoderma is an acquired type of vitiligo that can be initiated by various exogenous chemicals such as hydroquinone (HQ), rhododendrol (RD), or 4-tertiary butyl phenol (4-TBP). Despite the importance of epidermal keratinocytes in diverse dermatological conditions, their toxicological role in chemical leukoderma is poorly understood. To elucidate their role in the pathogenesis of chemical leukoderma, genome-scale transcriptional analysis was performed in human epidermal keratinocytes (HEKs) treated with a sub-cytotoxic HQ concentration (10 µM). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based functional enrichment analysis of HQ-induced differentially expressed genes (DEGs) revealed that HQ significantly upregulated DEGs related to the IL-17 signaling pathway and significantly downregulated DEGs associated with melanogenesis in HEKs. The meta-analysis between the HQ-induced and cytokine-induced transcriptional data (GSE53751) showed that 58 DEGs were commonly upregulated between HQ- and IL-17A-treated HEKs. Notably, the expression of IL36G was significantly increased in HEKs in response to both HQ and IL-17A. IL-36γ (2 µg/ml) directly inhibits melanin biosynthesis in cultured human epidermal melanocytes (HEMs) and downregulates the gene transcription of key enzymes in the melanogenesis pathway including TYR, DCT, and TYRP1. Moreover, IL-36γ autocrinally regulated keratinocyte function to produce the proinflammatory cytokines IL-36γ, IL-6, and CXCL8/IL-8 in a concentration-dependent manner, suggesting that IL-36γ may stimulate the amplification cycle of cutaneous inflammation. In this regard, hydroquinone-induced IL-36γ from human keratinocytes plays a pivotal role in the development of chemical leukoderma by autocrinally or paracrinally modulating the crosstalk between keratinocytes and melanocytes.


Assuntos
Hidroquinonas/toxicidade , Hipopigmentação/induzido quimicamente , Interleucina-1/fisiologia , Queratinócitos/fisiologia , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Citocinas/biossíntese , Humanos , Interleucina-17/farmacologia , Melanócitos/metabolismo , Transdução de Sinais , Vitiligo/etiologia
19.
Curr Mol Med ; 19(8): 589-596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244436

RESUMO

BACKGROUND: Angiogenesis is tightly linked to inflammation. Cytokines of interleukin 1 (IL-1) family are key mediators in modulating inflammatory responses. METHODS: In this study, we examined the role of IL-38, a member of the IL-1 family, in mediating inflammation-induced angiogenesis. RESULTS: The results showed that the angiogenesis was attenuated by topical administration of IL-38 to the injured corneas in a mouse model of alkali-induced corneal neovascularization (CNV). Further study showed that the expression of inflammatory cytokines TNF-α, IL-6, IL-8 and IL-1ß was decreased in the IL-38-treated corneas. Moreover, the angiogenic activities including the proliferation, migration and tube formation of human retinal endothelial cells were reduced by IL-38 treatment in vitro. CONCLUSION: The data indicate that IL-38 modulates inflammation-induced angiogenesis.


Assuntos
Neovascularização da Córnea/tratamento farmacológico , Interleucina-1/fisiologia , Administração Tópica , Animais , Movimento Celular , Células Cultivadas , Neovascularização da Córnea/etiologia , Citocinas/biossíntese , Citocinas/genética , Células Endoteliais/efeitos dos fármacos , Humanos , Interleucina-1/antagonistas & inibidores , Interleucina-1/farmacologia , Interleucina-1/uso terapêutico , Ceratite/induzido quimicamente , Ceratite/complicações , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/uso terapêutico , Retina/citologia , Hidróxido de Sódio/toxicidade , Fator A de Crescimento do Endotélio Vascular/farmacologia
20.
Brain Behav Immun ; 81: 292-304, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228609

RESUMO

As a major producer of the inflammatory cytokine interleukin-1 (IL-1), peripheral macrophages can augment IL-1 expression via type 1 IL-1 receptor (IL-1R1) mediated autocrine self-amplification. In the CNS, microglial cells are the major producers of inflammatory cytokines, but express negligible levels of IL-1R1. In the present study, we showed CNS IL-1 induced microglial proinflammatory cytokine expression was mediated by endothelial, not microglial, IL-1R1. This paracrine mechanism was further dissected in vitro. IL-1 was unable to stimulate inflammatory cytokine expression directly from the microglial cell line BV-2, but it stimulated the brain endothelial cell line bEnd.3 to produce a factor(s) in the culture supernatant, which was capable of inducing inflammatory cytokine expression in BV-2. We termed this factor IL-1-induced microglial activation factors (IMAF). BV-2 cytokine expression was inducible by extracellular ATP, but IL-1 did not stimulate the release of ATP from bEnd.3 cells. Filtration of IMAF by size-exclusion membranes showed IMAF activity resided in molecules larger than 50 kd and incubation of IMAF at 95 °C for 5 min did not alter its activity. Microglial inhibitor minocycline was unable to block IMAF activity, even though it blocked LPS induced cytokine expression in BV-2 cells. Adding NF-κB inhibitor to the bEnd.3 cells abolished IL-1 induced cytokine expression in this bi-cellular system, but adding NF-κB inhibitor after IMAF is already produced failed to abrogate IMAF induced cytokine expression in BV-2 cells. RNA sequencing of IL-1 stimulated endothelial cells revealed increased expression of genes involved in the production and processing of hyaluronic acid (HA), suggesting HA as a candidate of IMAF. Inhibition of hyaluronidase by ascorbyl palmitate (AP) abolished IMAF-induced cytokine expression in BV-2 cells. AP administration in vivo also inhibited ICV IL-1-induced IL-1 expression in the hippocampus and hypothalamus. In vitro, either TLR2 or TLR4 inhibitors blocked IMAF induced BV-2 cytokine expression. In vivo, however, IL-1 induced cytokine expression persisted in either TLR2 or TLR4 knockouts. These results demonstrate IL-1 induced inflammatory cytokine expression in the CNS requires a bi-cellular system and HA could be a candidate for IMAF.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-1/metabolismo , Animais , Linhagem Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Citocinas/imunologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/genética , Ácido Hialurônico/metabolismo , Proteínas I-kappa B/metabolismo , Interleucina-1/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...